Enrichment of protein-RNA crosslinks from crude UV-irradiated mixtures for MS analysis by on-line chromatography using titanium dioxide columns.

نویسندگان

  • Florian Martin Richter
  • He-Hsuan Hsiao
  • Uwe Plessmann
  • Henning Urlaub
چکیده

UV crosslinking is an appropriate method to identify proteins that directly contact nucleic acid, e.g., RNA. In combination with modern mass spectrometric (MS) analysis such an approach provides the opportunity to reveal not only the nature of the crosslinked proteins but also to identify the actual crosslinking sites between the protein and the nucleic acid. However, the relatively low yield in UV-induced crosslinking makes it difficult to identify in particular those species by MS that represent peptide-nucleic acid conjugates, as the great excess of noncrosslinked material interferes with their detection in MS. Here, we present an automated enrichment strategy of crosslinked peptide-RNA oligonucleotides derived from crude mixtures of UV-irradiated ribonucleoprotein (RNP) particles that uses TiO(2) columns integrated within a two-dimensional (2D) nanoliquid chromatography (LC) system. The setup combines two C18 precolumns, a TiO(2) enrichment column and a nanoanalytical column. It allows the removal of the noncrosslinked RNA and protein moiety and the specific enrichment of crosslinked peptide-RNA conjugates so that UV-irradiated and subsequently completely hydrolyzed RNP complexes can directly be loaded and analyzed by MS. In this feasibility study, we demonstrate the specific enrichment of peptide-RNA oligonucleotides derived from UV-irradiated native spliceosomal U1 snRNPs and spliceosomal [15.5K-61K-U4atac snRNA] complex reconstituted in vitro.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facilitating Phosphopeptide Analysis Using the Agilent HPLC Phosphochip

The analysis of phosphopeptides can be particularly challenging since they are mostly present at very low concentrations in a complex proteolytic sample. Selective enrichment strategies have been introduced to capture phosphopeptides from the sample prior to MS analysis, which can enhance detection capabilities. One of the more successful phosphopeptide enrichment techniques is based on the sel...

متن کامل

Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis.

Due to the dynamic nature and low stoichiometry of protein phosphorylation, enrichment of phosphorylated peptides from proteolytic mixtures is often necessary prior to their characterization by mass spectrometry. Several phosphopeptide isolation strategies have been presented in the literature, including immobilized metal ion affinity chromatography. However, that technique suffers from poor se...

متن کامل

Titanium dioxide coated MALDI plate for on target analysis of phosphopeptides.

Protein phosphorylation controls many cellular processes and activities. One of the major challenges in the proteomic study of phosphorylation is the enrichment of substoichiometric phosphorylated peptides from complex mixtures. Titanium dioxide (TiO2)-based chromatography is now widely applied to isolate phosphopeptides because of its efficiency and flexibility. In this study, a novel TiO2 coa...

متن کامل

Nanodiamond-based two-step sampling of multiply and singly phosphorylated peptides for MALDI-TOF mass spectrometry analysis.

Simultaneous detection of multiply and singly phosphorylated peptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is challenging because of suppression effects during ionization. In oder to overcome this problem, this study presents a new approach to improve the detection of phosphopeptides by stepwise enrichment using polyarginine-coated (P...

متن کامل

Improved identification of enriched peptide–RNA cross-links from ribonucleoprotein particles (RNPs) by mass spectrometry

Direct UV cross-linking combined with mass spectrometry (MS) is a powerful tool to identify hitherto non-characterized protein-RNA contact sites in native ribonucleoprotein particles (RNPs) such as the spliceosome. Identification of contact sites after cross-linking is restricted by: (i) the relatively low cross-linking yield and (ii) the amount of starting material available for cross-linking ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biopolymers

دوره 91 4  شماره 

صفحات  -

تاریخ انتشار 2009